Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosateresistant soybean

نویسندگان

  • Luiz Henrique Saes Zobiole
  • Robert John Kremer
  • Rubem Silvério de Oliveira
  • Jamil Constantin
چکیده

Previous greenhouse studies have demonstrated that photosynthesis in some cultivars of first(GR1) and second-generation (GR2) glyphosate-resistant soybean was reduced by glyphosate. The reduction in photosynthesis that resulted from glyphosate might affect nutrient uptake and lead to lower plant biomass production and ultimately reduced grain yield. Therefore, a field study was conducted to determine if glyphosate-induced damage to soybean (Glycine max L. Merr. cv. Asgrow AG3539) plants observed under controlled greenhouse conditions might occur in the field environment. The present study evaluated photosynthetic rate, nutrient accumulation, nodulation, and biomass production of GR2 soybean receiving different rates of glyphosate (0, 800, 1200, 2400 g a.e. ha–1) applied at V2, V4, and V6 growth stages. In general, plant damage observed in the field study was similar to that in previous greenhouse studies. Increasing glyphosate rates and applications at later growth stages decreased nutrient accumulation, nodulation, leaf area, and shoot biomass production. Thus, to reduce potential undesirable effects of glyphosate on plant growth, application of the lowest glyphosate rate for weed-control efficacy at early growth stages (V2 to V4) is suggested as an advantageous practice within current weed control in GR soybean for optimal crop productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate.

Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determi...

متن کامل

Nodulation, nutrient accumulation and yield of rainfed soybean in response to indigenous soybean-nodulating Bradyrhizobia in the Himalayan region of Kashmir-Pakistan

The use of efficient and effective nodulating Bradyrhizobia strains considered as anecologically and environmentally sound management strategy for soybean production. A 2-yr(2009 and 2010) field experiment was conducted to evaluate the effects of seven indigenousBradyrhizobium strains, one exotic TAL-102 and three N fertilizer rates, i.e., 25, 50 and 100kg N ha-1 on the productivity and N2 fixa...

متن کامل

Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean

Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing a glyphosate-insensitive 5-enolpyruvylshikimate-3phosphate synthase (EPSPS) enzyme has provided new opportunities for weed control in soybean production. However, glyphosate is toxic to the soybean nitrogen-fixing symbiont, Bradyrhizobium japonicum, as its EPSPS enzyme is sensitive to glyphosate. The effects of gly...

متن کامل

Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study...

متن کامل

Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a minireview.

Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] expressing an insensitive 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS) gene has revolutionized weed control in soybean production. The soybean nitrogen fixing symbiont, Bradyrhizobium japonicum, possesses a glyphosate-sensitive enzyme and upon exposure to glyphosate accumulates shikimic acid and hydroxybenzoic acids such as p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012